High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment
نویسندگان
چکیده
Respiratory motion is a complicating factor in PET imaging as it leads to blurring of the reconstructed images which adversely affects disease diagnosis and staging. Existing motion correction techniques are often based on 1D navigators which cannot capture the inter- and intra-cycle variabilities that may occur in respiration. MR imaging is an attractive modality for estimating such motion more accurately, and the recent emergence of hybrid PET/MR systems allows the combination of the high molecular sensitivity of PET with the versatility of MR. However, current MR imaging techniques cannot achieve good image contrast inside the lungs in 3D. 2D slices, on the other hand, have excellent contrast properties inside the lungs due to the in-flow of previously unexcited blood, but lack the coverage of 3D volumes. In this work we propose an approach for the robust, navigator-less reconstruction of dynamic 3D volumes from 2D slice data. Our technique relies on the fact that data acquired at different slice positions have similar low-dimensional representations which can be extracted using manifold learning. By aligning these manifolds we are able to obtain accurate matchings of slices with regard to respiratory position. The approach naturally models all respiratory variabilities. We compare our method against two recently proposed MR slice stacking methods for the correction of PET data: a technique based on a 1D pencil beam navigator, and an image-based technique. On synthetic data with a known ground truth our proposed technique produces significantly better reconstructions than all other examined techniques. On real data without a known ground truth the method gives the most plausible reconstructions and high consistency of reconstruction. Lastly, we demonstrate how our method can be applied for the respiratory motion correction of simulated PET/MR data.
منابع مشابه
Advanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملJoint PET-MR respiratory motion models for clinical PET motion correction
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET da...
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملQuantitative evaluation of PET respiratory motion correction using real- time PET/MR simulated data
King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, UK The impact of respiratory motion correction on quantitative accuracy in PET imaging is evaluated using real-time simulations for variable patient specific characteristics such as tumor malignancy and respiratory pattern. Respiratory patterns from real patients were acquired, with long quiescent motion per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image analysis
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2014